

IMPROVING OFFSHORE WIND FARM UNMANED MAINTENANCE: EAGLE PROJECT

M. Míguez, A. Gosset, M. Cabaleiro, M. Vidic, L. Santiago, J.M. Ciriano, A. Abdullah, A. García.

1) Grupo Integrado de Ingeniería, Campus Industrial, Universidade da Coruña.

64 Congreso de Ingeniería Naval e Industria Marítima, Marzo 2025, Gijón.

- Introduction.
- VolturnUS seakeeping performance.
- Short term motion prediction using ANN.
- Conclusions.

 INTRODUCTION

 IMPROVING OFFSHORE WIND FARM UNMANED MAINTENANCE: EAGLE PROJECT

- Drones have become a common tool for wind farm maintenance.
 - Speed of take-off.
 - Avoid great heights work environment.
 - Ease of use and reduced operating time.
- Sector is leading to autonomous drone operations.
 - Less onsite personnel.
 - Cost reduction
 - Increased safety.
- Difficulty of autonomous landing and take-off manoeuvres.

Photo: Vattenfalls

 INTRODUCTION

 IMPROVING OFFSHORE WIND FARM UNMANED MAINTENANCE: EAGLE PROJECT

- EAGLE is a **coordinated** project funded by the 2021 TED Projects (Ministry of Science, Innovation and Universities, Spain).
- UVIGO, UDC, CATEC.
- Digitizing the air and marine space to optimize the operation of drones applied to the maintenance of offshore wind farms.
- EAGLE **ENVIRONMENT**, EAGLE **MARINE** and EAGLE **FLY**.

Universida_{de}Vigo

• EAGLE **ENVIRONMENT**

• Modelling of the **environment** in which the drone operates.

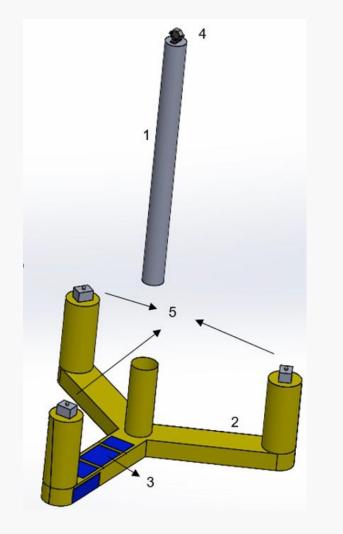
• EAGLE **MARINE**

- Modelling the floating **wind turbine and support vessel motions** under wind and waves.
- EAGLE **FLY**
 - Optimising the **take-off, landing and flight manoeuvres** of the drone from mobile platforms (ship decks and nacelles of floating wind turbines) and flying close to wind turbine infrastructures.

- EAGLE **MARINE** main research lines:
 - Motion analysis of a VolturnUS concrete 15 MW floating wind turbine.
 - Pitch and heave motion forecasting using ANN of a 30 m wind farm support vessel.

- Introduction.
- VolturnUS seakeeping performance.
- Short term motion prediction using ANN.
- Conclusions.

- VolturnUS UMaine design.
- Semisub concrete platform.
- IEA WTC Benchmark case.
- Base for 15 MW reference wind turbine.


Platform length	90,1 m
Platform beam	102,1 m
Platform depth	35 m
Platform draft	20 m
Maximum height	290 m
Nacelle height	135 m

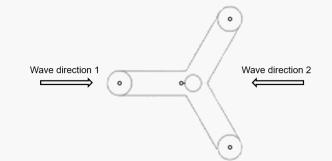
VolturnUS SEAKEEPING PERFORMANCE.IMPROVING OFFSHORE WIND FARM UNMANED M IMPROVING OFFSHORE WIND FARM UNMANED MAINTENANCE: EAGLE PROJECT



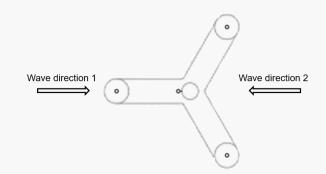
VolturnUS SEAKEEPING PERFORMANCE.IMPROVING OFFSHORE WIND FARM UNMANED MAINTENANCE: EAGLE PROJECT

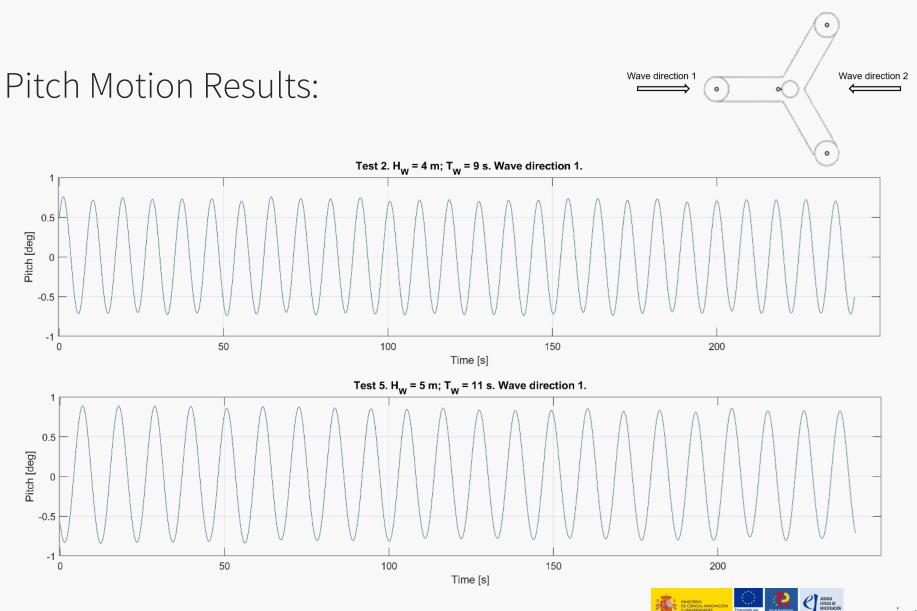
Wave conditions:

- Parque Nordés location.
- SeaWatch buoy "Villano Sisargas", 26 years historical data.
- Most frequent combinations of (T_p, H_s) .
- 12 cases regular waves, 4 irregular waves, 2 directions, with and without wind.

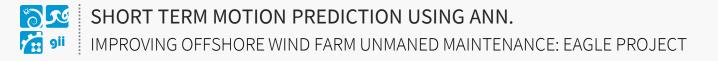


Pitch Motion Results:

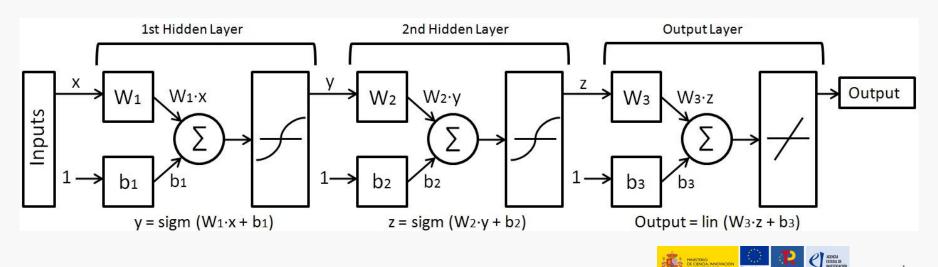

	Real	Scale	Model Scale	
Test	H _w (m)	T _W (s)	H _w (m)	T _W (s)
TEST 1	3,25	10	0,05	1,2
TEST 2	4	9	0,06	1,1
TEST 3	4,5	9	0,07	1,1
TEST 4	4,5	11	0,07	1,4
TEST 5	5	11	0,08	1,4

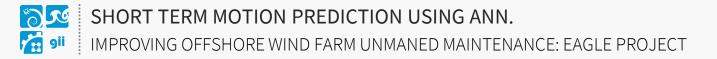

Pitch Motion Results:

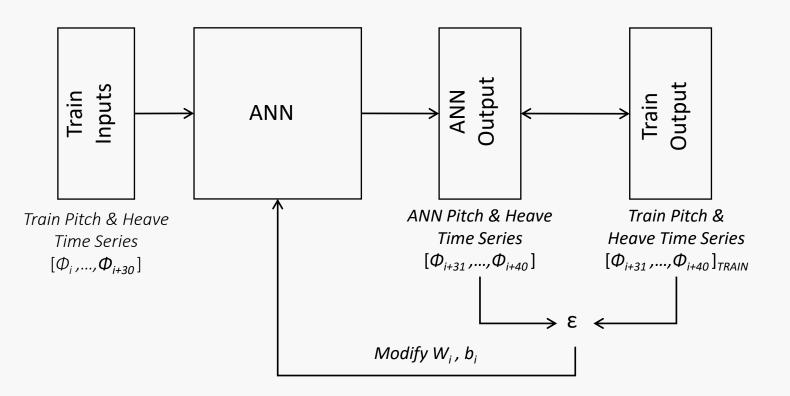
	Real	Scale	Model Scale			
Test	H _w (m)	T _W (s)	H _w (m)	T _W (s)	Mean Pitch Amplitude (deg)	Pitch Standard Deviation (deg)
TEST 1	3,25	10	0,05	1,2	0.5986	0.0170
TEST 2	4	9	0,06	1,1	0.7185	0.0169
TEST 3	4,5	9	0,07	1,1	0.7963	0.0207
TEST 4	4,5	11	0,07	1,4	0.7515	0.0257
TEST 5	5	11	0,08	1,4	0.8266	0.0345



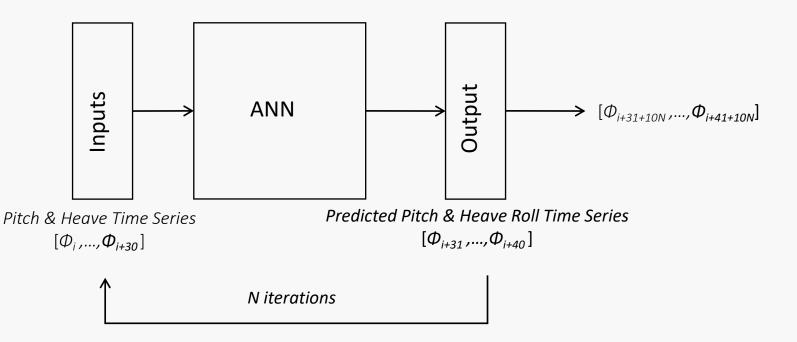
- Introduction.
- VolturnUS seakeeping performance.
- Short term motion prediction using ANN.
- Conclusions.




- Optimization of **drone take off and landing** operations from drone launching vessels.
- Being able to know, in advance, the **trajectory of the landing platform**, thus optimizing the performance of the drone control algorithms.
- **Predict**, in the short term, the **pitch and heave motions** of the vessel landing deck, ensuring:
 - Low cost (no need for expensive sensors or wave radars).
 - Unmanned operation.

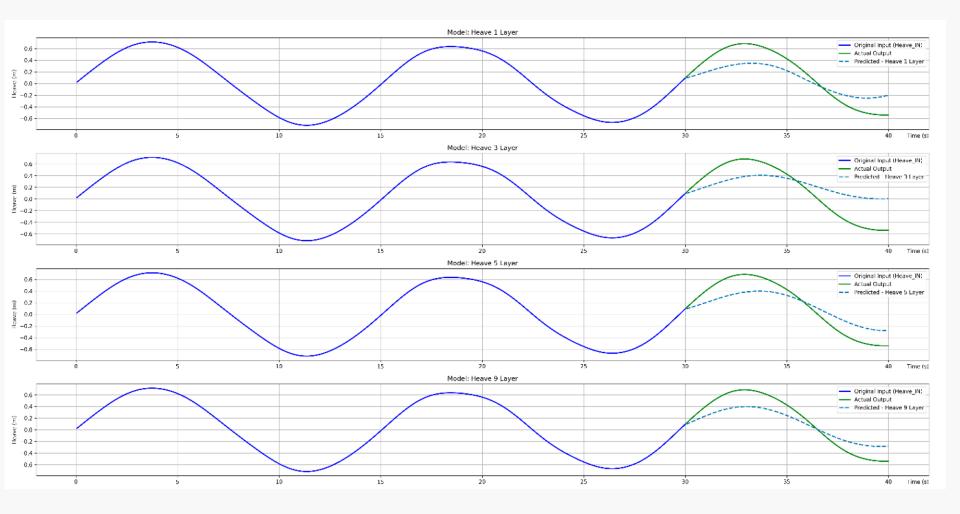


- Use of Artificial Neural Networks.
- Biological Like systems.
- Able to learn nonlinear behaviours from a given pattern (during a "training" process).
- Multilayer perceptron structure has been selected.


• Training process

• Forecasting process

SHORT TERM MOTION PREDICTION USING ANN. MPROVING OFFSHORE WIND FARM UNMANED MAINTENANCE: EAGLE PROJECT


- Case study:
- Mid sized wind farm support vessel.
- Training done with strip theory code 200 s time series (irregular waves).
- [1 3] m H_s, different T_P, [0 360] deg headings, [0 – 25] knts.

Overall length	32,2 m
Beam	6,5 m
Lightship displacement	94 t
Design displacement	110 – 120 t
Maximum displacement	146 t

SHORT TERM MOTION PREDICTION USING ANN. IMPROVING OFFSHORE WIND FARM UNMANED MAINTENANCE: EAGLE PROJECT

- Introduction.
- VolturnUS seakeeping performance.
- Short term motion prediction using ANN.
- Conclusions.

- The main objective of the project EAGLE Marine is **improving the autonomous operations of aerial drones** used in maintenance tasks of offshore wind farms.
- Maximum nacelle amplitudes of VolturnUS were investigated to analyse viability of drone maintenance operations in different wave conditions.
 - Process all available data to generate operational limitations diagrams.
- AI tools were proposed to **optimize autonomous drone landing** capabilities through support vessel motion forecasting.
 - Improve training and testing using towing tank experiment results.

IMPROVING OFFSHORE WIND FARM UNMANED MAINTENANCE: EAGLE PROJECT

Marcos Míguez González

Grupo Integrado de Ingeniería, Campus Industrial, Universidade da Coruña

<u>marcos.miguez@udc.es</u> <u>www.gii.udc.es</u>

This work has been funded by MICIU/AEI /10.13039/501100011033, through the project "EAGLE Marine - Digitalization of take-off/landing seaborne platforms of unmanned aircraft systems applied to offshore wind farms maintenance, code TED2021-129756B-C33 and by European Union NextGenerationEU/PRTR