FULLY COUPLED HYDROELASTIC ANALYSIS OF FLOATING WIND PLATFORMS

Borja Serván Camas <u>bservan@cimne.upc.edu</u> **CIMNE**

Julio García Espinosa Irene Berdugo Parada Andrés Pastor Sánchez

64º Congreso Internacional de Ingeniería Naval e Industria Marítima Gijón 26-28 de marzo de 2025

STRUCTURAL DESIGN

STRUCTURE PARTICULARS

CIMNE – DeepCwind:

	Unit	OC4-DeepCwind	CIMNE-DeepCwind	
Mass (with ballast)	kg	14,072,718	14,077,353	
Downwind distance of CM	m	0.00	0.00	
Lateral distance of CM	m	0.00	0.00	
Vertical distance of CM	m	-9.888	-11.057	
Roll inertia about CM	kg∙m²	$12,581 \cdot 10^{6}$	$11,206 \cdot 10^{6}$	
Pitch inertia about CM	kg∙m²	$12,567 \cdot 10^{6}$	$11,140.10^{6}$	
Yaw inertia about CM	kg∙m²	$12,290.10^{6}$	$11,302 \cdot 10^{6}$	
Ballast mass	kg	$9.6208 \cdot 10^{6}$	$8.5062 \cdot 10^{6}$	

Natural periods:

	NREL-DeepCwind	CIMNE DeepCwind
Surge	107.52 s	112.2 s
Sway	113.63 s	112.025 s
Heave	17.24 s	16.72 s
Roll	27.03 s	23.3 s
Pitch	27.02 s	23.275 s
Yaw	83.33 s	78.13 s

Finite Element Particulars:				
380,999 FEs				
171,025 Nodes				
1,026,150 DOFs				
Min. FE size: 2cm				
Max. FE size: 1m				

STRUCTURAL REDUCE ORDER MODEL

MODAL MATRIX REDUCTION (MMR)

Structural dynamics $\overline{\overline{M}}\ddot{u}(t) + \overline{\overline{C}}\dot{u}(t) + \overline{\overline{K}}u(t) = f(t) = f_D(t) + f_S$ Structural FEM solver	
Structural displacements $\boldsymbol{u}(t) = \boldsymbol{u}_D(t) + \boldsymbol{u}_S$	
Finite element system $\begin{cases} \overline{M}\ddot{u}_D(t) + \overline{C}\dot{u}_D(t) + \overline{K}u_D(t) = f_D(t) \\ \overline{K}u_S = f_S \end{cases}$	
Eigenvalue problem $(\overline{ar{M}}^{-1}\overline{ar{K}})m{a}= arOmega^2m{a}$	
Modal basis solution $\boldsymbol{u}_D(t) = \sum_{i=1}^{N_{DOF}} \boldsymbol{q}_i(t) \boldsymbol{a}_i$	
MMR approximation $u_{MMR}(t) = \sum_{i=1}^{N_m} q_i(t) a_i \approx u_D(t)$ $N_m \sim O(10^2 - 10^3) \ll N_{DOF} \sim O(10^6)$ High fidelity approximationLarge reduction of DOFs	
MMR system	Rayleigh odal damping
Energy convergence criterion $\frac{E_{FEM}^{D} - E_{MMR}^{D}}{E_{FEM}^{D}} < \epsilon \begin{cases} E_{FEM}^{D}(t) = \boldsymbol{u}_{D}^{T} \overline{\boldsymbol{k}} \boldsymbol{u}_{D} \\ E_{MMR}^{D}(t) = \boldsymbol{u}_{MMR}^{T} \overline{\boldsymbol{k}} \boldsymbol{u}_{MMR} = \sum_{i=1}^{i=N_{m}} \frac{1}{2} \Omega_{i}^{2} q_{i}^{2} \end{cases}$	3

MMR VERIFICATION

HYDROSTATIC EQUILIBRIUM

SeaFEM FRAMEWORK

SEAFEM®: https://www.compassis.com/en/tdyn/seakeeping-tdyn-seafem/

SeaFEM suite of tools:

- Wave diffraction-radiation
 - 2nd order Time-domain solver
 - Based on FEM
- Mooring solver
 - Springs
 - Elastic catenary
 - Dynamic FEM
 - Multi-segment lines
- Rigid Body Solver
 - Multibody systems
 - Body links
 - Morison elements
- Structural solver
 - Full FEM: *M* & *K*
 - MMR: modal base $a_i(x)$
- Wind turbine solver
 - OpenFAST coupling

COMPUTATIONAL FRAMEWORK

ILA FRAMEWORK

1-way/2-ways coupling

Advantages:

- All computed simultaneously in the time-domain (on the fly).
- Fast communication among solver (happens at RAM memory level)
- No need to write/read files from different softwares.

CIMNE⁹ 4

 Structural stresses can be reconstructed offline (afterwards) on demand.

HYDROELASTIC SOLVER COUPLING

Wave diffraction-radiation (FEM) – Structural (FEM) coupling

ar to use: All//SeaFEM___Nodes: 90K Elements: 524K Render: flat___(Orthogonal

MODAL DECAY TEST

Modal decay test.

QS: quasistatic
$$(Mu_D(t) + Cu_D(t) + \overline{K}u_D(t) = f_D(t))$$

Weak: dynamic & 1-way coupling

Strong: dynamic & 2-ways coupling

Spectral modal energy $S_m(\omega) = \Omega_m^2 S_w(\omega) MRAOs(\omega)^2$ Zero order moment: $E_m^0 = \int_0^\infty S_m(\omega) d\omega$

()

DLC 1.6 ANALYSIS

CIMNE⁹

OpenMP with 4 threads.

CPU: AMD Ryzen Threadripper 3970X 3.70GHz.

Computational time / simulation time

Colver		Hydroelastic coupling		
50	olver	1-way (weak)	2-ways (strong)	
Rigid Body+Dynamic Mooring (FEM):		0.66 s/s	1.03 s/s	
Wave diffraction-radiation		0.87 s/s	1.37 s/s	
Structural	FEM	4.6 s/s	50 s/s	
	MMR5000	0.47 s/s	5.1 s/s	
	MMR1000	0.10 s/s	1.1 s/s	

Structural solver:

- 1-way coupling: 1 solve per time step.
- 2-ways coupling: 1 solver per iteration (12 iterations per time step)

SECOND-ORDER WAVE RESONANCE

Twave=2Tmodal

First-order waves

Regular wave

Irregular waves

Second-order waves

650

OFFLINE ANALYSES BASED ON MRAOS

Computational resources:

- Number of Workstations: 1
- RAM memory: **512Gb**
- CPU unit: AMD Ryzen Threadripper PRO 5995WX 64-Cores 2.70 GHz

Step 1: Modal analysis (5000 modes): 16h

- FEM model: **1,026,150 DOFs**
- RAM required: 150 Gb
- Parallel execution: 64 cores

Step 2:Modal Response Amplitude Operators (MRAOS): 22h

- 72 time-domain simulations with white-noise spectrum
- 36 wave directions x 177 frequencies x 5000 modes = 31,860,000 MRAOs
- Files size: 576 Mb

OFFLINE FATIGUE ANALYSIS: computational time.... 1.1h

- Number of **loadcases**: **1000** (Tm, Hs, wave direction).
- Simulation **time** per loadcase: **3h**
- Time-step: 0.1s.
 - Number of hotspots: 1000 FE
 - Computational times breakdown:
 - Read structural/material/mesh data at hotspots....0.03s
 - Read modal basis at hotspots......26s
 - Compute modal amplitudes time series......700s
 - Compute at FE hotspots......3263s
 - Nodal displacements...... 1140s

 - Von Misses stresses..... 1150s
 - Fatigue damage (Rainflow counting)...... 406s

OFFLINE STRESS ANALYSIS: computational time....1.26h

- Number of **loadcases**: **1000** (Tm, Hs, wave direction).
- Simulation time per loadcase: 3h
- Time-step: 0.1s.
- Number of time-steps per loadcase: 200 (structural energy peaks)
- Computational times breakdown:
 - Read structural/material/mesh data at hotspots....0.016s
 - Read modal basis at hotspots......20s
 - Compute modal amplitudes time series......232s
 - Compute at all FEs.....4288s
 - Nodal displacements...... 1407s
 - Stresses tensor.....1039s
 - Von Misses stresses...... 1842s

REFERENCES

1. Berdugo-Parada, I.; Servan-Camas, B.; Garcia-Espinosa, J. Numerical Framework for the Coupled Analysis of Floating Offshore Multi-Wind Turbines. J. Mar. Sci. Eng. 2024, 12, 85. Doi: 10.3390/jmse12010085

2. Garcia-Espinosa, J.; Servan-Camas, B.; Calpe-Linares, M. High Fidelity Hydroelastic Analysis Using Modal Matrix Reduction. J. Mar. Sci. Eng. 2023, 11, 1168. Doi: 10.3390/jmse11061168

3. Servan-Camas, S.; Di-Capua, D.; Garcia-Espinosa, J.; Sa-Lopez, D. Fully 3D ship hydroelasticity: Monolithic versus partitioned strategies for tight coupling. J. Mar. Struct. Volume 80, 2021, 103098. Doi: <u>10.1016/j.marstruc.2021.103098</u>

4. Garcia-Espinosa, J; Servan-Camas, B. A non-linear finite element method on unstructured meshes for added resistance in waves. 2019. J. Ships Offshore Struct. DOI: 10.1080/17445302.2018.1483624

5. Servan-Camas, B.; Gutierrez-Romero, J.E.; García-Espinosa, J. A Time-Domain Second-Order FEM Model for the Wave Diffraction-Radiation Problem. Validation with a Semisubmersible Platform. Mar. Struct. 2018, 58, 278–300. Doi: <u>10.1016/j.marstruc.2017.12.001</u>

6- Serván-Camas, B.; Cercós-Pita, J.L.; Colom-Cobb, J.; García-Espinosa, J.; Souto-Iglesias, A. Time domain simulation of coupled sloshing–seakeeping problems by SPH–FEM coupling. J. Ocean Eng. 123(2016)383–396. Doi: <u>10.1016/j.oceaneng.2016.07.003</u>

7. Gutierrez-Romero, J.E.; García-Espinosa J.; Servan-Camas, B.; Zamora-Parra, B. Non-linear dynamic analysis of the response of moored floating structures. J. Mar. Struct. 49 (2016) 116e137. Doi: <u>10.1016/j.marstruc.2016.05.002</u>

8. Servan-Camas, B. A time-domain finite element method for seakeeping and wave resistance problems- Doctoral Thesis. School of Naval Architects and Marine Engineers. Technical University of Madrid. 2016.

9. Garcia-Espinosa, J.; Di Capua, D.; Servan-Camasa, B.; Ubach, P-A.; Oñate, E. A FEM fluid–structure interaction algorithm for analysis of the seal dynamics of a Surface-Effect Ship. J. Comput. Methods Appl. Mech. Engrg. 295 (2015) 290–304. Doi: <u>10.1016/j.cma.2015.07.010</u>

10. Servan-Camas, B.; García-Espinosa, J. Accelerated 3D Multi-Body Seakeeping Simulations Using Unstructured Finite Elements. J. Comput. Phys. 2013, 252, 382–403. Doi: 10.1016/j.jcp.2013.06.023

