

64th International Congress of Naval Architecture and Maritime Industry

26th ~ 28th March 2025

Gijón, Spain

Impact of Towing Tank Temperature on Model-Ship Extrapolation: Revisiting the ITTC Procedure

Sang – seok Han^{1*}, Saishuai Dai¹, Momchil Terziev¹, Soon – seok Song²

¹ Naval Architecture, Ocean & Marine Engineering, University of Strathclyde ² Naval Architecture and Ocean Engineering, Inha University

Introduction

Towing tank facility

- Importance of accurate ship performance estimation with IMO Net Zero initiative
- Prediction of full-scale ship performance through model tests
- Measurement of resistance, propulsion, and maneuvering characteristics in towing tank facilities

➤ Ship resistance test

- Measurement of resistance encountered by ship models (i.e., KCS and KVLCC2)
- Determining power requirements and evaluating full-scale ship resistance

- Components of hull resistance
 - Total viscous resistance coefficient (C_V)
 - Total wave resistance coefficient (C_W)
 - Total resistance coefficient, $C_T = C_V + C_W = (1 + k)C_F + C_W$
- ≻ ITTC 1978 performance prediction
 - Assumes model and ship have equal wave resistance coefficient
 - Calculates ship's total resistance using parameters (i.e., wetted surface area, density and design speed)

► ITTC 1957 correlation line

- Proposed solution to address the inconvenience of the ATTC curve's implicit equation
- Standardized method to calculate frictional resistance coefficient (by ITTC)
- Frictional resistance coefficient $(C_F) = \frac{0.75}{(\log Re 2)^2}$

64thInternational Con

Discussions

- Grigson (1993): Raised concerns about accuracy, proposed Grigson formula
- ITTC 23rd meeting (2002): Questioned friction curve validity (form factor)
- Katsui et al. (2005): Suggested Katsui line
- ITTC 25th meeting (2008): Recommend new friction formulas
- Wang et al. (2015), Zeng et al. (2019), Korkmaz et al. (2019, 2021): Proposed new numerical friction lines
- ITTC 29th meeting (2021): Concluded the need for further research before revising the friction curve

Issues with the ITTC correlation line have been consistently raised!

Research Gap and Research Motivation

- ➢ Research gap
 - Answer to the question, "Does the towing tank water temperature affect the model-ship extrapolation?"
- ► Research motivation
 - Investigating how variations in towing tank water temperature impact model-ship extrapolation across different friction curves

64th International Congres

➤ Aim:

- To investigate how variations in towing tank water temperature affect the model-ship extrapolation using the ITTC 1957 correlation line
- > Objectives:
 - To develop a resistance prediction model under different water temperature using CFD
 - Validation
 - Verification
 - To assess temperature-sensitivity of five different friction curves
 - ITTC 1957 correlation line
 - Kármán–Schoenherr formula
 - Grigson formula
 - Katsui equation
 - CFD method

64thInternational Congress

Overview and methodology of current research

FI

Gijón 26th-28th March, 20

➤ Target vessel: KCS and KVLCC2

- Validation: model-scale
- Scale factor
 - KCS: 31.6
 - KVLCC2: 58.0

Main particulars of KCS and KVLCC2 (SIMMAN 2008)

Main particulars	KCS		KVLCC2	
Main particulars	Full-scale	Model-scale	Full-scale	Model-scale
Scale factor, λ	1	31.6	1	58.0
Length between the perpendiculars, $L_{PP}(m)$	230	7.279	320	5.517
Beam at the waterline, $B_{wl}(m)$	32.2	1.0190	58	1.00
Design draught, T (m)	10.8	0.3418	20.8	0.3586
Wetted surface area w/o rudder, $S(m^2)$	9530	9.5441	27194	8.0838
Displacement, Δ (m^3)	52030	1.6490	312622	1.6023
Block coefficient, C_B	0.651	0.651	0.8098	0.8098

(a) KCS

(b) KVLCC2

Numerical modelling

- Star-CCM+ (ver. 18.06)
- Governing equation : Unsteady Reynolds Averaged Navier-Stokes (URANS)
- Turbulence model : Realisable k- ε turbulence model
- Trimmed cell mesh
- Prism layer
 - wall $y^+ \cong 50$ was set the same for all temperature conditions (i.e., 5 °C = 30 °C)

(b) Mesh generation of KCS

University of Strathclyde

- \succ Wall y^+
 - Wall $y^+ = \frac{yu_\tau}{y} > 30$
 - Mean Wall y⁺ is consistent with temperature for both KCS and KVLCC2
 - $v^+ \cong 50$ •
- \succ Wall y⁺ scene

64th International Congress of Naval Architecture and Maritime Industry

Temperature conditions

- Model-scale: 5, 12, 18, 25, and 30 °C
- Full-scale: 20 °C
- Water properties: ITTC Procedures (2011)

64th International Congress of Naval Architecture and Maritime Industry

- Form factor determination
 - Prohaska's Method (1966)
 - $C_T = C_V + C_W = (1+k)C_F + C_W$
 - $1 + k_M = C_{TM}/C_{FM}$
 - KCS: *Fr* = 0.1, 0.125, 0.15, and 0.175
 - KVLCC2: *Fr* = 0.075, 0.1, 0.125, 0.15, and 0.175

of Naval Architecture and Mariti

- Temperature effects on form factor
 - Experimental conditions
 - Towing tank temperatures: 5, 12, 18, 25, and 30 °C
 - Application
 - Applied form factors in the ITTC 1978 model-ship extrapolation method.
 - $k_M = k_S$

University of Strathclyde

Verification

Verification study

- Grid Convergence Index (Celik et al., 2008)
- Performed at each operation speed for KCS and KVLCC2
- KCS

Spatial convergence		No. Cells	C _T
	Coarse	588,291	3.751E-03
	Medium	975,772	3.747E-03
	Fine	1,596,346	3.741E-03
$GCI_{Fine}^{21}(\%)$			0.376
Temporal convergence		$\Delta t(s)$	C _T
	Coarse	0.02	3.779E-03
	Medium	0.01	3.744E-03
	Fine	0.005	3.741E-03
$GCI^{21}_{\Delta t_1}(\%)$			0.007

KVLCC2

Spatial convergence		No. Cells	C _T
	Coarse	597,623	4.271E-03
	Medium	1,061,000	4.227E-03
	Fine	1,886,772	4.218E-03
$GCI^{21}_{Fine}(\%)$			0.331
Temporal convergence		$\Delta t(s)$	C _T
Temporal convergence	Coarse	Δ t (s) 0.02	С _Т 3.779Е-03
Temporal convergence	Coarse Medium	Δ <i>t</i> (<i>s</i>) 0.02 0.01	С _T 3.779Е-03 3.744Е-03
Temporal convergence	Coarse Medium Fine	Δ <i>t</i> (<i>s</i>) 0.02 0.01 0.005	<i>C_T</i> 3.779E-03 3.744E-03 3.741E-03

Validation

Validation study

- Good agreement was achieved between CFD and EFD
 - KCS for Tokyo 2015
 - KVLCC2 for Gothenburg 2010

	CFD (present)	EFD	Relative difference
KCS	3.741E-03	3.711E-03 (Tokyo, 2015)	0.82%
KVLCC2	4.218E-03	4.180E-03 (Larsson et al., 2010)	0.91%

* With fine mesh (no.cell = KCS: 1.6 million, KVLCC2: 1.9 million) and fine timestep (dt =0.005s)

CFL number

of Naval Architecture and Marit

CFL number

- CFL number = $\frac{U\Delta t}{\Delta x}$, (U: design speed, Δt : time step, Δx : cell distance)
- Equal to 1 or less for stability in numerical solutions
 - KCS: 0.14
 - KVLCC2: 0.11
- \succ Wave scene

(a) KCS

(b) KVLCC2

University of Strathclyde

- Model-Ship extrapolation
 - Using different friction curves to compare temperature-sensitivity
 - ITTC 1957 correlation line
 - ATTC friction curve
 - Grigson formula
 - Katsui equation
 - CFD method
 - Based on the ITTC 1978 model-ship extrapolation
 - Identical water temperature conditions
 - Towing tank (Model): 5, 12, 28, 25, 30°C
 - Ship: 20°C
 - Form factor (*k*)
 - Determined using Prohaska's method for each towing tank temperature

64th International Congress of Naval Architecture and Maritime Industry

- ITTC correlation line-based model-ship extrapolation
 - Difference in C_T according to the ITTC 1957 correlation line
 - For KCS, the maximum difference is 1.8%, varying with temperature
 - For KVLCC2, the maximum difference is 2.8%, varying with temperature

64th International Congress of Naval Architecture and Maritime Industry

- ➢ Kármán−Schoenherr formula (a.k.a the ATTC friction curve)
 - The Schoenherr line was adopted by the American Towing Tank Conference (1947)
 - $\frac{1}{\sqrt{C_F}} = 4.13 \log(Re \times C_F)$
 - ATTC friction curve-based model-ship extrapolation

- Grigson formula (Grigson, 1993)
 - The most serious alternative to the ITTC correlation line and Schoenherr curve (Molland et al, 2011. *Ship Resistance and Propulsion*, 2nd ed.)
 - $C_F = [0.93 + 0.1377(\log Re 6.3)^2 0.06334(\log Re 6.3)^4 \times \frac{0.075}{(\log Re 2)^2}$

(For low Reynolds number, specifically $1.5 \times 10^6 < Re < 2 \times 10^7$)

• $C_F = [1.032 + 0.02816(\log Re - 8) - 0.006273(\log Re - 8)^2 \times \frac{0.075}{(\log Re - 2)^2})$

(For high Reynolds number, specifically $10^8 < Re < 4 \times 10^9$)

64th International Congress of Naval Architecture and Maritime Industry

- Grigson formula (Grigson, 1993)
 - Grigson formula-based model-ship extrapolation

- ➢ Katsui equation (Katsui et al., 2005)
 - Several studies have used a Katsui equation to compare various friction curves
 - Eça and Hoekstra (2008)
 - Wang et al. (2015)
 - Zeng et al. (2019)
 - Korkmaz et al. (2021)

•
$$C_F = \frac{0.0066577}{(\log Re - 4.3762)^a}$$
, $a = 0.042612 \times \log Re + 0.56725$

64th International Congress of Naval Architecture and Maritime Industry

➢ Katsui equation (Katsui et al., 2005)

Katsui equation-based model-ship extrapolation

64th International Congress

➤ "New" curve

- Introduced an imaginary C_F curve matching CFD-derived C_F values
- "New" curve-based model-ship extrapolation

University of Strathclyde

64th International Congress of Naval Architecture and Maritime Industry

- ITTC correlation line-based model-ship extrapolation
 - Difference in C_W according to the ITTC 1957 correlation line
 - For KCS, the maximum difference is 4.7%, varying with temperature
 - For KVLCC2, the maximum difference is 62.5%, varying with temperature

64th International Congress of Naval Architecture and Maritime Industry

- "New curve"-based model-ship extrapolation
 - Difference in C_W according to the CFD method
 - For KCS, the maximum difference is 1.2%, varying with temperature
 - For KVLCC2, the maximum difference is 3.7%, varying with temperature

64th International Congress

 \succ ITTC $C_F - CFD C_F$

> Effect of towing tank temperature on wave making resistance

- Wave-making resistance is unaffected by temperature (confirmed by consistent wave patterns).
- CFD-based C_W stays constant, while the ITTC correlation line shows variation.
- ITTC correlation misestimates frictional resistance, causing misleading C_W changes.

64th International Congress of Naval Architecture and Maritime Industry

Comparison of the extrapolation methods (KCS)

Naval Architecture and Mar

Comparison of the extrapolation methods (KVLCC2)

64thInternational Conc

Aim and Objectives

- To investigate how variations in towing tank water temperature affect the model-ship extrapolation using the ITTC 1957 correlation line
- To assess temperature-sensitivity of five different friction curves

> Implications

- The ITTC correlation line is significantly temperature-sensitive, affecting ship C_T predictions, by up to 2.8%
- The Grigson formula results in a maximum variation of 3.9% in ship C_T predictions
- The Katsui line and CFD method show minimal temperature-sensitivity, indicating more stable extrapolation, with a maximum difference of under 0.6%
- A new, accurate ITTC friction curve could improve extrapolation stability and reliability

Thank you for your attention!

Q&A

64th International Congress of Naval Architecture and Maritime Industry

- \succ Frictional resistance coefficient, C_F
 - Compared different friction curves
 - i.e., ITTC curve, ATTC curve, Grigson formula, Katsui line and CFD method
 - Values were compared with those measured via CFD

≻ Limitations

- CFD simulations have numerical uncertainties that can affect result accuracy
- The "new" curve is hypothetical and doesn't realistically exist in terms of Reynolds numbers
- The influence of wave-making resistance was not considered
- Additional research using experimental fluid dynamics (EFD) is necessary

